Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wolfgang Braun, Beatrice Calmuschi,* Daniel Totev and Albrecht Salzer

Institute of Inorganic Chemistry, RWTH Aachen University, Prof.-Pirlet-Straße 1, 52074 Aachen, Germany

Correspondence e-mail:
beatrice.calmuschi@ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study

$T=110 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.084$
Data-to-parameter ratio $=22.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tricarbonyl $\left\{\eta^{6}\right.$-(S,S)-1-[2-methoxy-3,6-bis(tri-methylsilyl)phenyl]-N,N-dimethylethylamine\}chromium(0)

The title complex, $\left[\mathrm{Cr}\left(\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NOSi}_{2}\right)(\mathrm{CO})_{3}\right]$, has the typical three-legged piano-stool structure expected for η^{6}-arenetricarbonylchromium compounds. The conformation is staggered with respect to the methoxy group of the arene ring and one of the carbonyl ligands.

Comment

In the course of our work (Totev et al., 2004; Braun et al., 2004; Englert et al., 2004; Salzer, 2003) on the diastereoselective synthesis of planar chiral arenetricarbonylchromium complexes, we synthesized and structurally characterized the title complex, (I) (Fig. 1). The complex crystallizes in the noncentrosymmetric orthorhombic space group $P 2_{1} 2_{1} 2_{1}$.

(I)

The non-H atoms attached to the complexed arene ring are displaced from the least-squares plane defined by the atoms in the aromatic ring (C104-C109) to various extents; a considerable distortion of -0.193 (1) \AA (towards the Cr atom) is observed for Si1, whereas Si 2 shows a displacement of only

View of (I), with 30% displacement ellipsoids and H atoms shown as spheres of arbitrary radii.

Received 23 February 2005 Accepted 24 February 2005 Online 4 March 2005
0.068 (1) \AA (away from the Cr atom). Atom C 112 is displaced by 0.088 (2) \AA and O1 shows the smallest displacement of -0.006 (1) \AA. The $\mathrm{N}-\mathrm{C} 112-\mathrm{C} 108-\mathrm{C} 107$ torsion angle is $133.5(2)^{\circ}$. The lone pair of electrons of the N atom of the chiral side chain point towards the adjacent trimethylsilyl group $[\mathrm{N} \cdots \operatorname{si2}=3.059$ (3) \AA], while the two N-methyl groups are pointing away from Si 2 to minimize steric hindrance.

Experimental

Compound (I) was synthesized by thermal complexation of (S, S) -1-[2-methoxy-3,6-bis(trimethylsilyl)phenyl]- N, N-dimethylethylamine using Kündig's reagent (naphthalene) $\mathrm{Cr}(\mathrm{CO})_{3}$ (Kündig et al., 1985) in a high-pressure Schlenk tube in an $n-\mathrm{Bu}_{2} \mathrm{O} /$ tetrahydrofuran mixture. After work-up, yellow single crystals were obtained by slow diffusion of hexanes into a diethyl ether solution at 243 K .

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NOSi}_{2}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=459.65$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=7.1361$ (12) £
$b=17.251$ (3) \AA
$c=19.541$ (3) \AA
$V=2405.7$ (7) \AA^{3}
$Z=4$
$D_{x}=1.269 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.779, T_{\text {max }}=0.982$
33064 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.084$
$S=0.92$
5984 reflections
263 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 8096 reflections
$\theta=1.6-28.3^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Rod, yellow
$0.44 \times 0.03 \times 0.03 \mathrm{~mm}$

5984 independent reflections
5037 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-22 \rightarrow 22$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0411 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2578 \text { Friedel pairs } \\
& \text { Flack parameter }=-0.006(18)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cr} 1-\mathrm{C} 3$	$1.844(3)$	$\mathrm{Cr} 1-\mathrm{C} 106$	$2.236(2)$
$\mathrm{Cr} 1-\mathrm{C} 2$	$1.846(3)$	$\mathrm{Cr} 1-\mathrm{C} 104$	$2.246(2)$
$\mathrm{Cr} 1-\mathrm{C} 1$	$1.850(3)$	$\mathrm{Cr} 1-\mathrm{C} 107$	$2.270(2)$
$\mathrm{Cr} 1-\mathrm{C} 105$	$2.214(3)$	$\mathrm{Cr} 1-\mathrm{C} 108$	$2.272(2)$
$\mathrm{Cr} 1-\mathrm{C} 109$	$2.235(2)$		
$\mathrm{C} 3-\mathrm{Cr} 1-\mathrm{C} 2$	$88.76(12)$	$\mathrm{C} 2-\mathrm{Cr} 1-\mathrm{C} 1$	$87.98(12)$
$\mathrm{C} 3-\mathrm{Cr} 1-\mathrm{C} 1$	$85.17(12)$		

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$. Methyl groups were allowed to rotate as rigid groups.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support by the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 440 'Methods in Asymmetric Synthesis' and Sonderforschungsbereich 380 'Asymmetric Synthesis with Chemical and Biological Methods') is gratefully acknowledged.

References

Braun, W., Calmuschi, B., Haberland, J., Hummel, W., Liese, A., Nickel, T., Stelzer, O. \& Salzer, A. (2004). Eur. J. Inorg. Chem. 11, 2235-2243.
Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconson, USA
Englert, U., Hu, C., Salzer, A. \& Alberico, E. (2004). Organometallics, 23, 5419-5431.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kündig, E. P., Perret, C., Sprichinger, S. \& Bernardinelli, G. (1985). J. Organomet. Chem. 286, 183-200.
Salzer, A. (2003). Coord. Chem. Rev. 242, 59-72.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst, 36, 7-13.
Totev, D., Salzer, A., Carmona, D., Oro, L. A., Lahoz, F. J. \& Dabrinovitch, I. T. (2004), Inorg. Chim. Acta, 357, 2889-2898.

